Dado el vector de coordenadas (8,6) en el plano cartesiano, obtener el modulo y su dirección.
M=8u ; θ= 30,25°
M=10u ; θ= 36,86°
M=12u ; θ= 46,16°
M=9u ; θ= 52,25°
0
El módulo del vector \(\vec v=(8,6)\) es
\(\displaystyle M=\sqrt{8^{2}+6^{2}}=\sqrt{64+36}=10\;u.\)
Su dirección (ángulo con el eje x) se obtiene con
\(\displaystyle \theta=\arctan\!\left(\frac{6}{8}\right)\approx 36{,}86^{\circ}.\)
Opción correcta: B) \(M = 10u,\; \theta = 36{,}86^\circ\).
No te pierdas la oportunidad de ayudar a los demás. ¡Regístrate o inicia sesión para agregar una solución!
Ayuda a la comunidad respondiendo algunas preguntas.
Un coche sale de la ciudad A en dirección B …